About Me

My name is Kai Sun. I am a postdoctoral associate in the Department of Geography at the University at Buffalo (UB), advised by Dr. Yingjie Hu. My current major research interest is in geospatial artificial intelligence (GeoAI), with a special focus on understanding and extracting location descriptions from disaster related social media messages. CV can be downlaoded here.

Interests
  • Geospatial artificial intelligence
  • Disaster management
  • Natural language processing
Education
  • Ph.D. in GIScience, 2021

    Institute of Geographic Sciences and Natural Resources Research, CAS

  • M.S. in GIScience, 2017

    Institute of Geographic Sciences and Natural Resources Research, CAS

  • B.E. in Remote sensing, 2014

    Wuhan University

Publications

22. Qiu, Q., Li, H., Hu, X., Tian, M., Ma K., Zhu, Y., Sun, K.*, Li, W., Wang, S., & Xie, Z. (2024).     A knowledge-guided spatio-temporal correlation measure considering rules and     dependency syntax for knowledge graph adaptive representation. Transactions in GIS.     In press.
21. Sun, K., Zhou, R. Z., Kim, J., and Hu, Y. (2024). PyGRF: An improved Python     Geographical Random Forest model and case studies in public health and natural     disasters. Transactions in GIS. In press.
20. Li, W., Sun, K.*, Wang, S., Zhu, Y., Dai, X., & Hu, L. (2024). DePNR: A DeBERTa-based     deep learning model with complete position embedding for place name recognition     from geographical literature. Transactions in GIS. In press.
19. Sun, K., Hu, Y., Gaurish L., & Zhou, R. Z. (2023). Spatial cross-validation for GeoAI, In:     S. Gao, Y. Hu, and W. Li (Eds), Handbook of Geospatial Artificial Intelligence, Taylor &     Francis Group.
18. Zhu, Y., Sun, K.*, Wang, S., Zhou, C., Lu, F., Lv, H., Qiu, Q., Wang, X.,, & Qi, Y. (2023). An     Adaptive Representation Model for Geoscience Knowledge Graphs Considering     Complex Spatiotemporal Features and Relationships. Science China Earth Sciences,     66(11), 2563-2578.
17. Li, W., Sun, K.*, Zhu, Y., Ding, F., Hu, L., Dai, X., Song, J., Yang, J., Qian, L., & Wang, S.     (2023). GeoTPE: A Neural Network Model for Geographical Topic Phrases Extraction     from Literature Based on BERT Enhanced with Relative Position Embedding. Expert     Systems with Applications, 121077.
16. Sun, K., Hu, Y., Ma, Y., Zhou, R. Z., & Zhu, Y. (2023). Conflating point of interest (POI)     data: A systematic review of matching methods. Computers, Environment and Urban     Systems, 103, 101977.
15. Dai, X., Zhu, Y., Sun, K.*, Zou, Q., Zhao, S., Li, W., Hu, L., & Wang, S. (2023). Examining     the Spatially Varying Relationships between Landslide Susceptibility and Conditioning     Factors Using a Geographical Random Forest Approach: A Case Study in Liangshan,     China. Remote Sensing, 15(6), 1513.
14. Wang, S., Yan, X., Zhu, Y., Song, J., Sun, K., Li, W., Hu, L., Qi, Y., & Xu, H. (2022). New     Era for Geo-Parsing to Obtain Actual Locations: A Novel Toponym Correction Method     Based on Remote Sensing Images. Remote Sensing, 14(19), 4725.
13. Qiu, Q., Xie, Z., Wang, S., Zhu, Y., Lv, H., & Sun, K. (2022). ChineseTR: A weakly     supervised toponym recognition architecture based on automatic training data     generator and deep neural network. Transactions in GIS, 26(3), 1256-1279.
12. Zhu, Y., Sun, K.*, Hu, X., Lv, H., Wang, X., Yang, J., Wang, S., Li, W., Song, J., Su, N., &     Mu, X. (2022). Research and practice on the framework for the construction, sharing,     and application of large-scale geoscience knowledge graphs. Journal of Geo-
    information Science
, 25(6), 1215-1227. (in Chinese)
11. Zhu, Y., Sun, K.*, Li, W., Wang, S., Song, J., Cheng, Q., Yang, J., Mu, X., Geng, W., Dai, X.     (2021). Comparative Analysis and Enlightenment of Geoscience Knowledge Graphs: A     Perspective of Construction Methods and Contents. Geological Journal of China     Universities, 29(3): 382-394. (in Chinese)
10. Sun, K., Hu, Y., Song, J., & Zhu, Y. (2021). Aligning geographic entities from historical     maps for building knowledge graphs. International Journal of Geographical     Information Science, 35(10), 2078-2107.
9. Li, W., Sun, K., Zhu, Y., Song, J., Yang, J., Qian, L., & Wang, S. (2021). Analyzing the     research evolution in response to COVID-19. ISPRS International Journal of Geo-
    Information
, 10(4), 237-260.
8. Sun, K., Zhu, Y., Pan, P., Hou, Z., Wang, D., Li, W., & Song, J. (2019). Geospatial data     ontology: the semantic foundation of geospatial data integration and sharing. Big     Earth Data, 3(3), 269-296.
7. Sun, K., Zhu, Y., & Song, J. (2019). Progress and challenges on entity alignment of     geographic knowledge bases. ISPRS International Journal of Geo-Information, 8(2),     77-101.
6. Yang, J., Zhu, Y., Song, J., Lu, F., Sun, K., & Li, W. (2018). A Precise Description     Approach on the Result of Automatic Data Matching for Geo-spatial Model. Journal     of Geo-information Science, 20(6), 744-752. (in Chinese)
5. Zhu, Y., Zhu, A. X., Song, J., Yang, J., Feng, M., Sun, K., Zhang J., Hou Z., & Zhao, H.     (2017). Multidimensional and quantitative interlinking approach for linked geospatial     data. International Journal of Digital Earth, 10(9), 923-943.
4. Zhu, Y., Zhu, A. X., Feng, M., Song, J., Zhao, H., Yang, J., Zhang Q., Sun K., Zhang J., &     Yao, L. (2017). A similarity-based automatic data recommendation approach for     geographic models. International Journal of Geographical Information Science,     31(7), 1403-1424.
3. Li, W., Zhu, Y., Song, J., Sun, K., & Yang, J. (2017). Geospatial Data Provenance     Ontology and Its Application in Data Linking. Journal of Geo-information Science,     19(10), 1261-1269. (in Chinese)
2. Sun, K., Zhu, Y., Pan, P., Luo, K., Wang, D., & Hou, Z. (2016). Research on Morphology     Ontology and Its Application in Geospatial Data Discovery. Journal of Geo-
    information Science
, 18(8), 1011-1021. (in Chinese)
1. Sun, K., Zhu, Y., Pan, P., Luo, K., Wang, D., & Hou, Z. (2015). Morphology-ontology of     geospatial data and its application in data discovery. In 2015 23rd International     Conference on Geoinformatics, 1-6.

Teaching

1. GEO 514: GIS and Machine Learning (Spring 2024, at University at Buffalo)

Presentations

8. Oral presentation (2024): PyGRF: An improved Python Geographical Random Forest     model and case studies in public health and natural disasters, 2024 Esri User     Conference: Innovations in GI Science, July 15-19, 2024, San Diego, California, USA.
7. Poster presentation (2024): GALLOC: A GeoAnnotator for Labeling LOCation     descriptions from disaster-related text messages, 2024 CaGIS + UCGIS Symposium,     June 3-6, 2024, Columbus, Ohio, USA.
6. Oral presentation (2023): GALLOC: A GeoAnnotator for Labeling LOCation descriptions     from disaster-related text messages, the 4th Spatial Data Science Symposium,     September 5-6, 2023, Online.
5. Oral presentation (2023): GALLOC: A GeoAnnotator for Labeling LOCation descriptions     from disaster-related text messages, International Symposium on Location-Based Big     Data and GeoAI, August 12, 2023, Online.
4. Oral presentation (2022): Geospatial data ontology: the semantic foundation of     geospatial data integration and sharing, International Training Workshop on     Resource & Environment Scientific Data Sharing and Disaster Risk Reduction     Knowledge Service along the Belt and Road, November 20-24, 2022, Online.
3. Oral presentation (2022): Aligning geographic entities from historical maps based on     spatial mapping transformation, the 5th International Conference on Big Earth Data,     November 12-13, 2022, Online.
2. Oral presentation (2021): Geospatial data ontology: the semantic foundation of     geospatial data integration and sharing, the 19th International Conference on Spatial     Data Handling and Geographic Intelligence, August 13-14, 2021, Online.
1. Oral presentation (2015): Morphology-Ontology of Geospatial Data and its     Application in Data Discovery, the 23rd International Conference on Geoinformatics,     June 19-21, 2015, Wuhan, China.

Awards

5. ICA Scholarship, By International Cartographic Association (ICA), 2024
4. Excellent Graduate, by Institute of Geographic Sciences and Natural Resources     Research, 2021
3. Doctoral Fellowship, by Institute of Geographic Sciences and Natural Resources     Research, 2018, 2019
2. Joint Ph.D. Student Scholarship, by China Scholarship Council, 2018
1. Undergraduate Fellowship, by Wuhan University, 2011, 2012